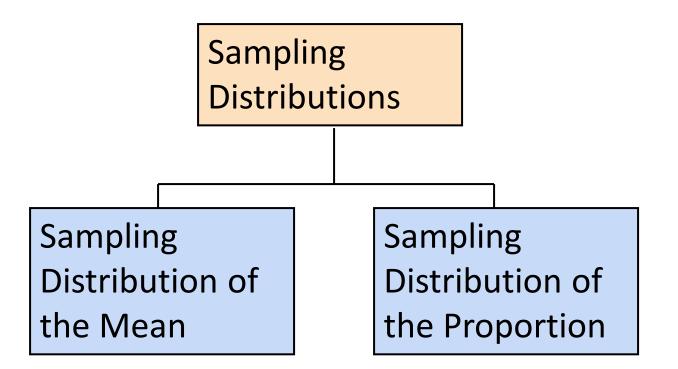


Unit 3 - Estimation

Sampling Distributions

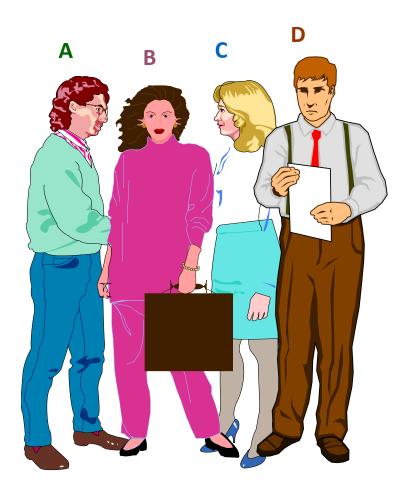
In this unit, you learn:

- The concept of the sampling distribution
- To compute probabilities related to the sample mean
- The importance of the Central Limit Theorem
- To distinguish between different survey sampling methods
- To evaluate survey worthiness and survey errors



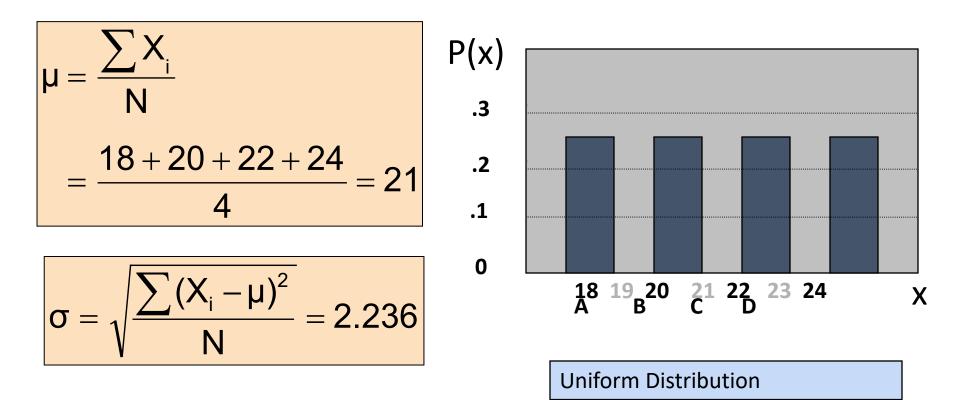
 A sampling distribution is a distribution of all of the possible values of a statistic for a given size sample selected from a population

- Assume there is a population ...
- Population size N=4
- Random variable, X, is age of individuals
- Values of X: 18, 20, 22, 24 (years)



(continued)

Summary Measures for the Population Distribution:



(continued)

Now consider all possible samples of size n=2

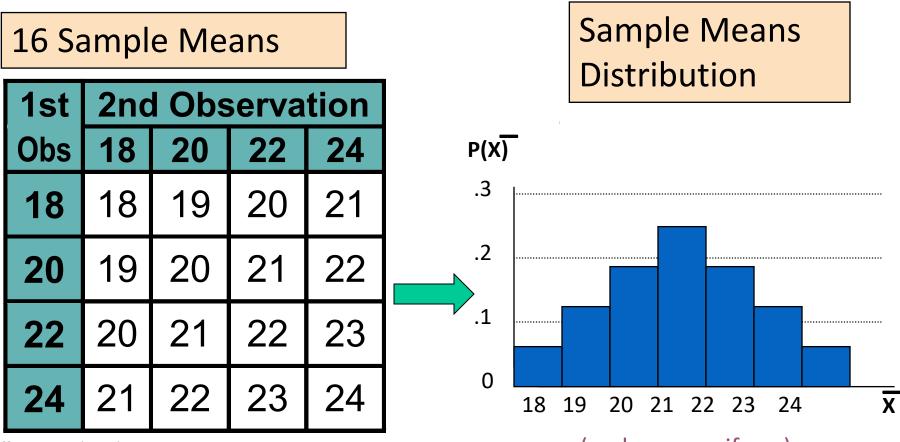
						1			16 Sa	mple N	Means	
	1 st	2 nd Observation							-			
	Obs	18	20	22	24							
	18	18,18	18,20	18,22	18,24		1st	2nc	nd Observation			
	20	20,18	20,20	20,22	20,24		Obs	18	20	22	24	
	22	22,18	22,20	22,22	22,24		18	18	19	20	21	
	24	24,18	24,20	24,22	24,24		20	19	20	21	22	
16 possible samples							22	20	21	22	23	
			(sampling with replacement)				24	21	22	23	24	

Compiled by: Kamarul Ariffin Mansor (2021)

Source: Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.

(continued)

Sampling Distribution of All Sample Means



Compiled by: Kamarul Ariffin Mansor (2021) Source: Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. (no longer uniform)

(continued)

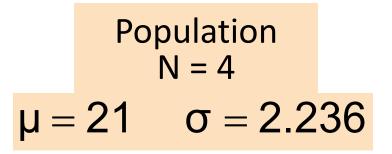
Summary Measures of this Sampling Distribution:

$$\mu_{\overline{X}} = \frac{\sum \overline{X}_{i}}{N} = \frac{18 + 19 + 21 + \dots + 24}{16} = 21$$

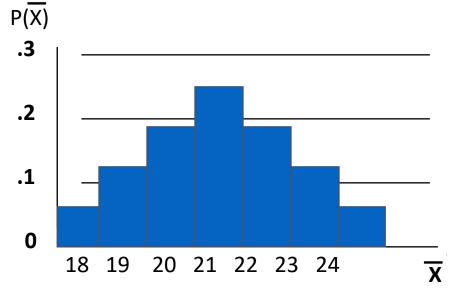
$$\sigma_{\overline{X}} = \sqrt{\frac{\sum (\overline{X}_{i} - \mu_{\overline{X}})^{2}}{N}}$$
$$= \sqrt{\frac{(18 - 21)^{2} + (19 - 21)^{2} + \dots + (24 - 21)^{2}}{16}} = 1.58$$

Compiled by: Kamarul Ariffin Mansor (2021) Source: Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.

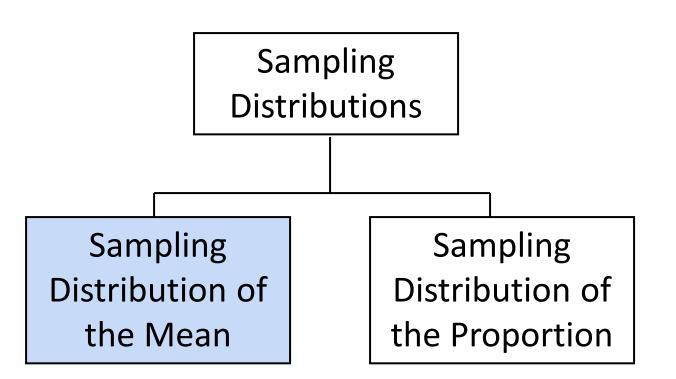
Comparing the Population with its Sampling Distribution



Sample Means Distribution n = 2 $\mu_{\overline{X}} = 21$ $\sigma_{\overline{X}} = 1.58$



Sampling Distributions



- Different samples of the same size from the same population will yield different sample means
- A measure of the variability in the mean from sample to sample is given by the Standard Error of the Mean:

(This assumes that sampling is with replacement or sampling is without replacement from an infinite population)

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

• Note that the standard error of the mean decreases as the sample size increases

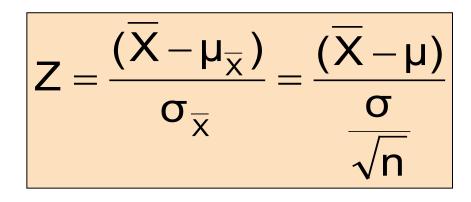
• If a population is normal with mean μ and standard deviation σ , the sampling distribution of \overline{X} is also normally distributed with

$$\mu_{\overline{X}} = \mu$$
 and

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

Z value for Sampling Distribution of the Mean

• Z-value for the sampling distribution of $: \overline{X}$

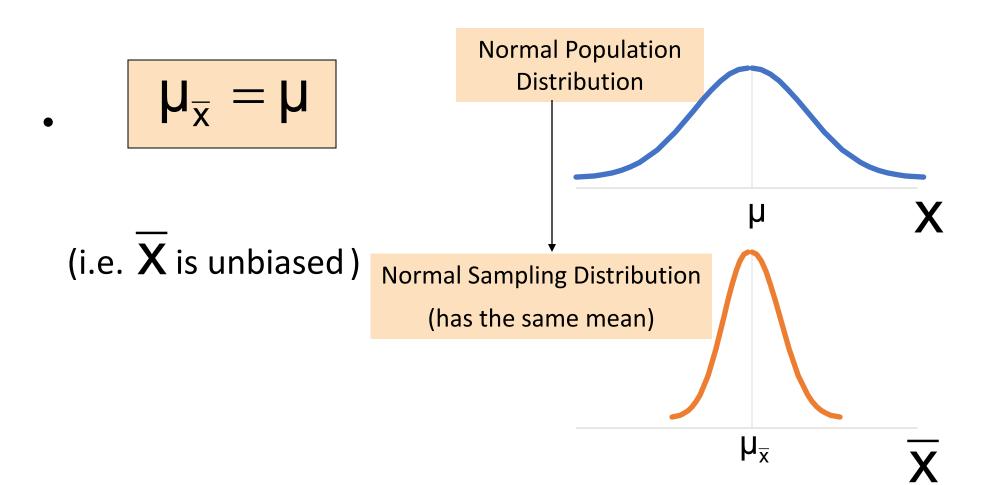


where: \overline{X} = sample mean

- μ = population mean
- σ = population standard deviation
- n = sample size

Sampling Distributions

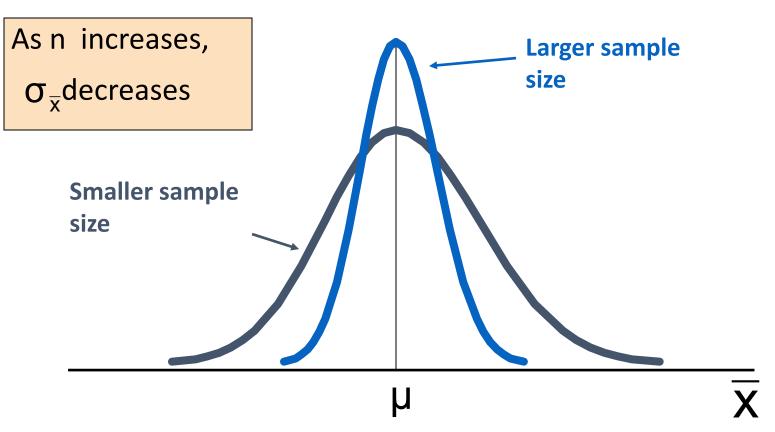
Sampling Distribution Properties



Sampling Distributions

Sampling Distribution Properties

(continued)



- We can apply the Central Limit Theorem:
 - Even if the population is not normal,
 - ...sample means from the population will be approximately normal as long as the sample size is large enough.

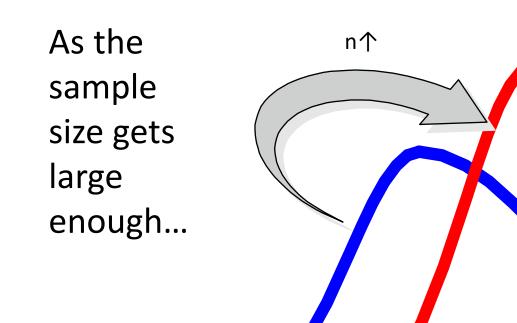
Properties of the sampling distribution:

$$\mu_{\overline{x}} = \mu$$
 and C

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

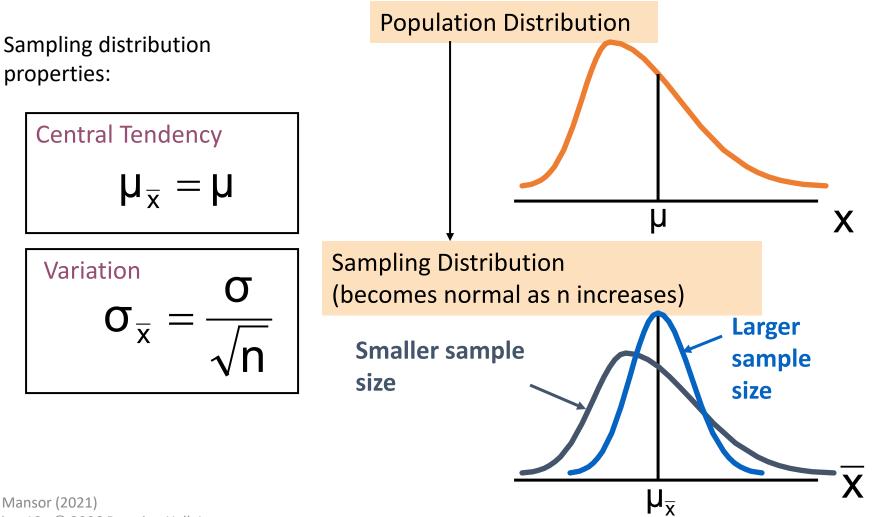
Compiled by: Kamarul Ariffin Mansor (2021) Source: Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.

Central Limit Theorem



the sampling distribution becomes almost normal regardless of shape of population

If the Population in **not** Normal



- For most distributions, n > 30 will give a sampling distribution that is nearly normal
- For fairly symmetric distributions, n > 15
- For normal population distributions, the sampling distribution of the mean is always normally distributed

Example

- Suppose a population has mean μ = 8 and standard deviation σ = 3. Suppose a random sample of size n = 36 is selected.
- What is the probability that the sample mean is between 7.8 and 8.2?

Example

(continued)

Solution:

- Even if the population is not normally distributed, the central limit theorem can be used (n > 30)
- ... so the sampling distribution of ${\boldsymbol X}$ is approximately normal
- ... with mean $\mu_{\overline{x}} = 8$

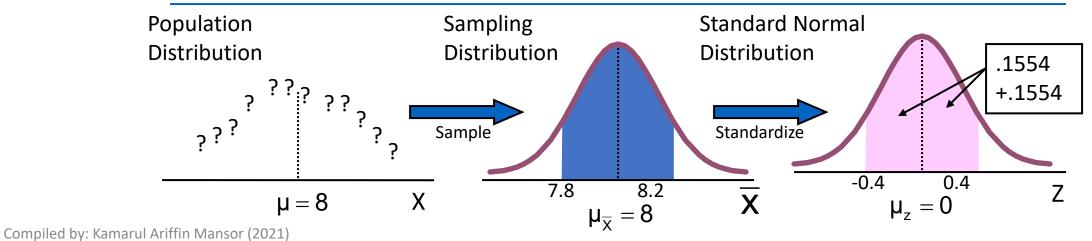
• ...and standard deviation
$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{3}{\sqrt{36}} = 0.5$$

Compiled by: Kamarul Ariffin Mansor (2021) Source: Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.

(continued)

Solution (continued):

$$P(7.8 < \overline{X} < 8.2) = P\left(\frac{7.8 - 8}{3/\sqrt{36}} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \frac{8.2 - 8}{3/\sqrt{36}}\right)$$
$$= P(-0.4 < Z < 0.4) = 0.3108$$



Source: Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.

Summary

- Introduced sampling distributions
- Described the sampling distribution of the mean
 - For normal populations
 - Using the Central Limit Theorem
- Calculated probabilities using sampling distributions